Congruence Classes of 2-adic Valuations of Stirling Numbers of the Second Kind

نویسندگان

  • Curtis Bennett
  • Edward Mosteig
چکیده

We analyze congruence classes of S(n, k), the Stirling numbers of the second kind, modulo powers of 2. This analysis provides insight into a conjecture posed by Amdeberhan, Manna and Moll, which those authors established for k at most 5. We provide a framework that can be used to justify the conjecture by computational means, which we then complete for values of k between 5 and 20.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The 2-adic Valuation of Stirling Numbers

We analyze properties of the 2-adic valuations of S(n, k), the Stirling numbers of the second kind. A conjecture that describes patterns of these valuations for fixed k and n modulo powers of 2 is presented. The conjecture is established for k = 5.

متن کامل

Modified degenerate Carlitz's $q$-bernoulli polynomials and numbers with weight ($alpha ,beta $)

The main goal of the present paper is to construct some families of the Carlitz's $q$-Bernoulli polynomials and numbers. We firstly introduce the modified Carlitz's $q$-Bernoulli polynomials and numbers with weight ($_{p}$. We then define the modified degenerate Carlitz's $q$-Bernoulli polynomials and numbers with weight ($alpha ,beta $) and obtain some recurrence relations and other identities...

متن کامل

p-adic Properties of Lengyel’s Numbers

Lengyel introduced a sequence of numbers Zn, defined combinatorially, that satisfy a recurrence where the coefficients are Stirling numbers of the second kind. He proved some 2-adic properties of these numbers. In this paper, we give another recurrence for the sequence Zn, where the coefficients are Stirling numbers of the first kind. Using this formula, we give another proof of Lengyel’s lower...

متن کامل

On 2-adic Orders of Stirling Numbers of the Second Kind

We prove that for any k = 1, . . . , 2 the 2-adic order of the Stirling number S(2, k) of the second kind is exactly d(k) − 1, where d(k) denotes the number of 1’s among the binary digits of k. This confirms a conjecture of Lengyel.

متن کامل

Stirling Numbers and Generalized Zagreb Indices

We show how generalized Zagreb indices $M_1^k(G)$ can be computed by using a simple graph polynomial and Stirling numbers of the second kind. In that way we explain and clarify the meaning of a triangle of numbers used to establish the same result in an earlier reference.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013